在 Apache Spark 中,任务的切分(Task Division)机制

Apache Spark 中,任务的切分(Task Division)是 Spark 将应用程序逻辑划分为多个并行任务的核心机制。任务切分的主要原则是基于数据分区和操作算子。以下是任务切分的核心原则和关键影响因素:

1. Spark 任务切分的基本概念

  • Task:Spark 的最小计算单元,一个 Task 处理一个分区的数据。
  • Stage:一组可以并行执行的任务,每个 Stage 包含多个 Task。
  • Job:由一个 Action(如 count()save())触发的计算任务,是 Stage 的集合。

2. 任务切分的原则

2.1 基于分区(Partition)的切分

  • Spark 的任务划分以 分区(Partition) 为基础,每个分区的数据由一个 Task 处理。
  • 分区数决定了 Task 的数量,通常由以下几个因素确定:
    1. 初始 RDD 分区数
      • 数据读取时分区数的默认值:
        • HDFS 文件:由 HDFS 块大小决定,默认 128MB 或 64MB。
        • Local 文件:由 sparkContext.textFile(path, numPartitions) 中的 numPartitions 参数决定。
    2. 后续操作对分区的影响
      • 转换算子(如 repartition()coalesce())会重新定义分区数。
      • 数据 Shuffle 也会重新分区,默认的分区数可以通过 spark.sql.shuffle.partitions 配置。

2.2 基于依赖关系(Dependency)的切分

  • 根据 RDD 的依赖关系,划分计算阶段(Stage):
    1. 宽依赖(Wide Dependency)
      • 一次计算需要多个分区的数据(如 groupByKeyreduceByKey)。
      • 会引发 Shuffle,需重新划分 Stage。
    2. 窄依赖(Narrow Dependency)
      • 一次计算仅依赖一个分区的数据(如 mapfilter)。
      • 任务可以在同一 Stage 中完成。

2.3 基于算子的切分

  • Action 操作会触发一个 Job,每个 Job 会切分成多个 Stage:
    • Stage 划分依据是 算子类型依赖关系
    • 例如:
rdd.map(...).filter(...).reduceByKey(...).count()

mapfilter 为窄依赖,在同一 Stage。

reduceByKey 引发 Shuffle,产生新 Stage。

3. 任务切分的影响因素

3.1 数据源

  • HDFS:分区数受 HDFS 块大小影响。
  • Kafka:分区数与 Kafka Topic 分区数一致。
  • 本地文件:受文件的大小和读取方式影响。

3.2 算子

  • 窄依赖算子:如 mapflatMapfilter,不会触发 Stage 划分。
  • 宽依赖算子:如 reduceByKeyjoingroupByKey,会触发 Shuffle 和 Stage 切分。

3.3 分区数

  • 分区数的大小直接决定 Task 的数量:
    • 分区数太少,不能充分利用集群资源(任务并行度低)。
    • 分区数太多,可能导致任务调度开销增加。

3.4 配置参数

  • spark.default.parallelism:默认的 RDD 分区数(推荐设置为 2-3 倍的 Executor 核心数)。
  • spark.sql.shuffle.partitions:Shuffle 操作的默认分区数,适用于 SQL 操作。

4. Spark 任务切分优化

4.1 数据分区优化

  • 使用 repartition()coalesce() 调整分区数:
    • 增加分区repartition() 会触发全量 Shuffle,适合大任务。
    • 减少分区coalesce() 会尽量避免 Shuffle,适合减少小任务。
  • 示例:python复制代码
rdd = rdd.repartition(100)  # 将分区数调整为 100

4.2 算子优化

  • 优先使用聚合算子:如 reduceByKey 优于 groupByKey,可减少 Shuffle 数据量。
  • 本地合并:如 mapPartitions,在分区内先进行局部计算。

4.3 分区策略优化

  • 自定义分区器:对 key-value 数据可以使用 partitionBy 自定义分区规则。
    • 示例:python复制代码
rdd = rdd.partitionBy(10)  # 自定义为 10 个分区

4.4 配置调整

  • 并行度设置
    • 增加 spark.default.parallelismspark.sql.shuffle.partitions 的值,提升任务并行度。
  • 优化资源分配
    • 确保每个 Executor 有足够的内存和 CPU。

5. 实例分析:任务划分示例

以下示例展示 Spark 如何根据分区和依赖划分任务:

代码示例

from pyspark import SparkContext

sc = SparkContext("local", "Task Division Example")

data = [("a", 1), ("b", 2), ("a", 3), ("b", 4), ("c", 5)]
rdd = sc.parallelize(data, 2)

# 1. Map 操作(窄依赖,不引发 Shuffle)
mapped_rdd = rdd.map(lambda x: (x[0], x[1] * 2))

# 2. ReduceByKey 操作(宽依赖,引发 Shuffle)
reduced_rdd = mapped_rdd.reduceByKey(lambda x, y: x + y)

# 3. Collect 动作(触发 Job)
result = reduced_rdd.collect()

print(result)

任务划分

  1. 初始分区数rdd 分为 2 个分区。
  2. Stage 1
    • 执行 map 操作,生成 2 个 Task(每个分区一个)。
  3. Stage 2
    • reduceByKey 引发 Shuffle,生成新的 2 个 Task。
  4. Stage 3
    • collect 操作触发结果收集任务。

6. 总结

  • Spark 的任务切分主要基于数据分区和算子依赖关系。
  • 窄依赖 算子通常在一个 Stage 内完成,而 宽依赖 算子会引发 Shuffle 和 Stage 切分。
  • 任务切分影响集群资源利用效率,合理配置分区数、选择高效算子是优化的关键。

发布者:myrgd,转载请注明出处:https://www.object-c.cn/4521

Like (0)
Previous 2024年11月25日 上午11:02
Next 2024年11月25日 下午4:14

相关推荐

  • 在 Nuxt.js 应用中,webpack 的 compile 事件钩子构建过程

    在 Nuxt.js 应用中,webpack 的 compile 事件钩子通常用于在构建过程中处理或监听 Webpack 编译的状态。webpack 是 Nuxt.js 中的核心构建工具之一,而 Nuxt.js 本身是基于 Webpack 配置的,允许你通过扩展 Webpack 配置来进行自定义。要使用 webpack 的 compile 事件钩子,首先你需要…

    2024年11月29日
    00
  • Android 解决 “Module was compiled with an incompatible version of Kotlin“

    “Module was compiled with an incompatible version of Kotlin” 错误通常出现在 Android 开发中,因为模块的 Kotlin 编译器版本与项目中的 Kotlin 编译器版本不匹配。以下是解决此问题的方法: 1. 检查 Kotlin 插件版本步骤:打开 Android Studio。点击顶部菜单的 …

    2024年11月26日
    00
  • 在github上提交PR(Pull Request) + 多个pr同时提交、互不干扰的方法

    在 GitHub 上提交 PR(Pull Request)是一种将代码变更合并到主分支或其他目标分支的常见方式。在同时处理多个 PR 时,需要使用独立的分支来避免相互干扰。以下是详细教程: 步骤一:单个 PR 的提交流程Fork 仓库如果没有直接访问权限,先 fork 原仓库到自己的 GitHub 帐号。在 fork 的仓库上操作自己的代码。克隆仓库到本地 …

    2024年11月26日
    00
  • 部署 Harbor 时,如果运行 install 脚本报错可能导致问题的

    在部署 Harbor 时,如果运行 install 脚本报错,可能是网络问题导致的。以下是排查网络问题的方法: 1. 检查网络连通性 测试目标网络的连通性: 检查 DNS 配置: 如果解析失败,检查 /etc/resolv.conf 中的 DNS 配置,或者尝试手动指定公共 DNS,如 Google 的 8.8.8.8 或阿里云的 223.5.5.5。 2.…

    2024年12月9日
    00
  • 在 Go 语言中,对文件的基础操作介绍

    在 Go 语言中,文件操作是基础技能之一,主要通过 os、io 和 io/ioutil 等标准库完成。以下是对文件操作的全面介绍,帮助你在 Go 语言的“成神之路”上迈出关键一步! 1. 创建文件使用 os.Create 创建文件,如果文件已存在会被清空。示例代码 2. 打开文件使用 os.Open 打开文件(只读模式),使用 os.OpenFile 可以指…

    2024年12月2日
    00
  • 浏览器跨域请求中携带 Cookie需要同时在前端和后端进行配置

    浏览器跨域请求中,要让请求携带 Cookie,需要同时在前端和后端进行配置。以下是实现的方法: 前端配置 在前端代码中使用 fetch 或 Axios 发起请求时,需要设置 credentials 属性: 1. Fetch 示例 2. Axios 示例 后端配置 在后端需要允许跨域请求,并确保 Cookie 能够正常传递。 1. 设置 Access-Cont…

    2024年12月9日
    00
  • Web实时通信和 @microsoft/signalr 微软开发的一款基于 SignalR 的实时通信库

    Web实时通信和 @microsoft/signalr@microsoft/signalr 是微软开发的一款基于 SignalR 的实时通信库,专为 Web 应用提供强大的实时通信功能。SignalR 的主要特点包括支持双向通信、自动选择传输协议(WebSockets、Server-Sent Events 或 Long Polling)以及简化的服务器与客户…

    2024年12月1日
    00
  • 安装 Laravel 11 + Filament 详细教程

    安装Laravel 11之前选确保安装了Composer 管理器,接下来的步骤是通过Composer 包管理器安装完成的。 一、前提条件 二、使用 Composer 创建新的 Laravel 11 项目 三、在现有项目中添加 Laravel 11(如果是集成到现有项目) 请注意,在实际安装过程中,可能会遇到各种问题,如权限问题(在 Linux 下,如果没有足…

    2025年1月18日
    00
  • Apache DolphinScheduler 一款分布式大数据工作流调度系统

    Apache DolphinScheduler 是一款分布式大数据工作流调度系统。Task 是其核心组件之一,用于定义和调度具体的任务。以下是基于 Apache DolphinScheduler 3.1.9 的 Task 处理流程的解析: 1. Task 提交 在 DolphinScheduler 中,Task 的生命周期通常由用户提交一个具体的任务定义开始…

    2024年12月7日
    00
  • 在 Kubernetes 中,解决kubelet下载docker私有仓库验证问题

    在 Kubernetes 中,kubelet 默认需要访问容器镜像时,能够成功从 Docker 私有仓库拉取镜像。遇到验证问题时,通常需要解决 镜像仓库认证 和 TLS 证书配置 问题。以下是具体步骤: 1. 配置私有镜像仓库认证如果私有镜像仓库需要身份验证,需要配置 imagePullSecrets 或在每个节点设置全局 Docker 登录。方法 1:使用…

    2024年12月2日
    00
  • 在 Apache Kafka 中消息的消费和传递通过消费者与 Kafka 的分布式系统协作完成

    在 Apache Kafka 中,消息的消费和传递是通过消费者(Consumer)与 Kafka 的分布式系统协作完成的。以下是消息传递的主要流程: 1. Producer 生产消息到 Kafka 2. Consumer 消费消息 Kafka 中消费者的消息消费流程如下: 2.1 订阅主题 消费者通过 Kafka 客户端订阅一个或多个主题。它可以: 2.2 …

    2024年12月9日
    00
  • 在 .NET 8 框架中使用 Web API 项目并通过引用 SqlSugar ORM 来操作数据库

    在 .NET 8 框架中使用 Web API 项目并通过引用 SqlSugar ORM 来操作数据库,可以遵循以下步骤: 1. 准备工作确保已安装 .NET 8 SDK 和 SqlSugar NuGet 包。创建或打开现有的 Web Core API 项目。安装 SqlSugar NuGet 包: 2. 配置 SqlSugar在 Web API 项目中配置 …

    2024年11月27日
    00
  • 在 MySQL 中 ORDER BY和HAVING用于数据查询和处理

    在 MySQL 中,ORDER BY和HAVING是用于数据查询和处理的两个重要子句,通常与SELECT语句一起使用,以下是它们的具体使用方法: ORDER BY子句 其中,column1、column2等是要排序的列名。ASC表示升序排序(默认),DESC表示降序排序。 多列排序示例:如果要先按照部门编号升序排序,再按照工资降序排序,可以这样写: 按表达式…

    2024年12月15日
    00
  • Redis中如何使用lua脚本redis与lua的相互调用方法

    在 Redis 中,Lua 脚本 提供了一种强大的方式来执行原子操作,可以在 Redis 服务器上直接执行 Lua 代码,从而避免了多次网络往返和保证操作的原子性。Redis 内置了对 Lua 脚本的支持,通过 EVAL 命令来执行脚本,EVALSHA 则用于执行已经加载到 Redis 服务器的脚本。1. Redis 与 Lua 脚本的基本交互1.1 基本的…

    2024年11月28日
    00
  • 如何用pbootcmsAPI接口开发微信小程序UNIAPP

    使用 PbootCMS 的 API 接口结合 UniApp 开发微信小程序,可以实现高效的内容管理和展示。以下是一个完整的开发流程,包括 API 接口设置、小程序功能设计和开发细节。 1. 准备工作1.1 配置 PbootCMS API 接口PbootCMS 提供 API 功能,需在后台开启并配置:登录 PbootCMS 后台管理。前往 系统管理 -> AP…

    2024年11月28日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信