实现 Qwen2.5-7B-Instruct 模型在本地部署并结合 vLLM 推理加速和 Gradio 搭建前端界面

要实现 Qwen2.5-7B-Instruct 模型在本地部署并结合 vLLM 推理加速和 Gradio 搭建前端界面,以下是详细步骤:

1. 环境准备

  • 确保安装了必要的工具和库,包括 transformers (>=4.37.0),torchvllm,和 gradio
  • GPU 驱动与 CUDA 工具链需正确安装以支持高效推理。

2. 模型加载与配置

通过 Hugging Face Transformers 加载 Qwen2.5-7B-Instruct 模型:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

3. 推理加速

  • 使用 vLLM 增加推理吞吐量,特别适合长文本输入场景。需启用 rope_scaling 设置来支持更长的上下文长度。
  • 配置 config.json:
{
  "rope_scaling": {
    "factor": 4.0,
    "original_max_position_embeddings": 32768,
    "type": "yarn"
  }
}

4. 前端界面部署

通过 Gradio 创建简洁的用户界面:

import gradio as gr

def chat_with_model(input_text):
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=512)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

interface = gr.Interface(fn=chat_with_model, inputs="text", outputs="text")
interface.launch()

5. 部署和优化

  • 确保启用多卡并行(如使用 device_map="auto")。
  • 调整 max_new_tokens 和批量大小以适配硬件内存。

6. 实际应用

结合此方法,可快速搭建一个支持高效推理的 Qwen 模型服务,适合长文本问答和其他语言生成任务【126】【127】。

更多细节可参考 Hugging FacevLLM 文档

发布者:myrgd,转载请注明出处:https://www.object-c.cn/4565

Like (0)
Previous 2024年11月26日 上午10:51
Next 2024年11月26日 上午11:14

相关推荐

  • Python中处理JSON文件的最新教程

    在 Python 中处理 JSON 文件是非常常见的操作。JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人类阅读和编写,也容易机器解析和生成。Python 提供了强大的 json 模块来方便地处理 JSON 数据。 基本操作:读取、写入和解析 JSON 文件 以下是一个关于如何使用 Python 中的 jso…

    2024年11月24日
    00
  • 云服务器安装宝塔强制重启导致MySQL无法启动

    在云服务器上进行 强制重启 后,MySQL 无法启动的情况,通常是由于以下几种原因引起的。强制重启可能会导致 MySQL 数据库的文件系统损坏、配置文件丢失、锁定文件问题等,下面是一些排查和解决方法。1. 检查 MySQL 错误日志MySQL 无法启动时,首先需要查看 MySQL 的错误日志,以获取更多的错误信息。错误日志通常位于 /var/log/mysq…

    2024年11月29日
    00
  • 在 .NET 8 框架中使用 Web API 项目并通过引用 SqlSugar ORM 来操作数据库

    在 .NET 8 框架中使用 Web API 项目并通过引用 SqlSugar ORM 来操作数据库,可以遵循以下步骤: 1. 准备工作确保已安装 .NET 8 SDK 和 SqlSugar NuGet 包。创建或打开现有的 Web Core API 项目。安装 SqlSugar NuGet 包: 2. 配置 SqlSugar在 Web API 项目中配置 …

    2024年11月27日
    00
  • 在 Kubernetes 中,解决kubelet下载docker私有仓库验证问题

    在 Kubernetes 中,kubelet 默认需要访问容器镜像时,能够成功从 Docker 私有仓库拉取镜像。遇到验证问题时,通常需要解决 镜像仓库认证 和 TLS 证书配置 问题。以下是具体步骤: 1. 配置私有镜像仓库认证如果私有镜像仓库需要身份验证,需要配置 imagePullSecrets 或在每个节点设置全局 Docker 登录。方法 1:使用…

    2024年12月2日
    00
  • 微信小程序开发中使用 Tailwind CSS 提高开发效率和代码的可维护性

    Tailwind CSS 是一个利用原子化 CSS 类来构建用户界面的框架,在微信小程序开发中使用 Tailwind CSS 可以提高开发效率和代码的可维护性。以下是在微信小程序中使用 Tailwind CSS 进行原子 CSS 开发的具体步骤: 安装 Tailwind CSS 配置 Tailwind CSS 引入样式:在微信小程序的全局样式文件app.wx…

    2024年12月15日
    00
  • 在Java中 ArrayList 和 LinkedList 实现 List 接口类

    在Java中,ArrayList 和 LinkedList 都是实现了 List 接口的类,但它们在底层实现和使用场景上有显著的区别。以下是它们的主要区别: 1. 底层实现ArrayList基于动态数组实现。元素是连续存储的,每个元素都可以通过索引直接访问。LinkedList基于双向链表实现。每个元素由节点(Node)存储,节点包含数据和前后节点的引用。 …

    2024年12月2日
    00
  • 在 Apache Kafka 中消息的消费和传递通过消费者与 Kafka 的分布式系统协作完成

    在 Apache Kafka 中,消息的消费和传递是通过消费者(Consumer)与 Kafka 的分布式系统协作完成的。以下是消息传递的主要流程: 1. Producer 生产消息到 Kafka 2. Consumer 消费消息 Kafka 中消费者的消息消费流程如下: 2.1 订阅主题 消费者通过 Kafka 客户端订阅一个或多个主题。它可以: 2.2 …

    2024年12月9日
    00
  • 浏览器跨域请求中携带 Cookie需要同时在前端和后端进行配置

    浏览器跨域请求中,要让请求携带 Cookie,需要同时在前端和后端进行配置。以下是实现的方法: 前端配置 在前端代码中使用 fetch 或 Axios 发起请求时,需要设置 credentials 属性: 1. Fetch 示例 2. Axios 示例 后端配置 在后端需要允许跨域请求,并确保 Cookie 能够正常传递。 1. 设置 Access-Cont…

    2024年12月9日
    00
  • 解决 Vue 3 应用部署到 GitHub Pages 后,遇到 404 错误问题

    在将 Vue 3 应用部署到 GitHub Pages 后,遇到 404 错误通常是由于 GitHub Pages 处理路由时的问题。Vue 3 使用 Vue Router 来管理前端路由,而 GitHub Pages 本身是静态托管服务,不支持处理 SPA(单页面应用)的客户端路由。因此,当你直接访问某个页面 URL(比如 https://youruser…

    2024年11月29日
    00
  • PHM技术:一维信号时序全特征分析(统计域/频域/时域)信号处理

    PHM(Prognostics and Health Management,预测与健康管理)技术中的一维信号时序特征分析,旨在从信号中提取与设备健康状态相关的多种特征。以下是针对统计域、频域和时域特征分析的详细介绍和常见方法。 1. 时域特征分析时域特征直接从原始信号提取,描述信号的统计特性或时间行为。这些特征反映信号的幅值、变化趋势和波形形状。1.1 常用…

    2024年11月28日
    00
  • 不同版本ffmpeg压缩比差距很大的问题(使用videotoolbox硬编码)

    不同版本的 FFmpeg 在使用 videotoolbox 硬件编码时,压缩比差距较大的问题,通常与以下几个因素相关:1. FFmpeg 硬件编码支持的变化:FFmpeg 集成了多种硬件加速技术(例如在 macOS 上使用 videotoolbox),而随着版本的更新,FFmpeg 可能对硬件编码进行了修复、改进或修改,这些变化可能会导致不同版本之间的压缩效…

    2024年11月27日
    00
  • Android 解决 “Module was compiled with an incompatible version of Kotlin“

    “Module was compiled with an incompatible version of Kotlin” 错误通常出现在 Android 开发中,因为模块的 Kotlin 编译器版本与项目中的 Kotlin 编译器版本不匹配。以下是解决此问题的方法: 1. 检查 Kotlin 插件版本步骤:打开 Android Studio。点击顶部菜单的 …

    2024年11月26日
    00
  • Docker快速部署Nginx、Redis、MySQL、Tomcat以及制作镜像方法

    使用 Docker 快速部署 Nginx、Redis、MySQL、Tomcat 以及制作镜像 通过 Docker,开发者可以快速部署和管理各种服务。本文介绍如何快速使用 Docker 部署 Nginx、Redis、MySQL 和 Tomcat,以及如何制作自定义镜像。 1. Docker 基础准备 安装 Docker 如果还未安装 Docker,可按照以下步…

    2024年11月26日
    00
  • Gradle 在国内访问官方仓库

    Gradle 在国内访问官方仓库(如 Maven Central 或 JCenter)时,可能会受到网络限制影响,速度较慢甚至无法连接。为解决此问题,可以配置国内镜像源,提高构建效率 推荐的国内镜像源以下是常用的国内 Gradle 仓库镜像:阿里云 Maven 仓库:地址:https://maven.aliyun.com/repository/public华…

    2024年11月26日
    00
  • 在 Android 中 Matrix 实现图像的缩放和裁剪将 Glide 图像从 fitCenter 转换为 centerCrop

    在 Android 中,Matrix 可以用来实现图像的缩放和裁剪逻辑。要将 Glide 图像从 fitCenter 转换为 centerCrop,需要通过 Matrix 计算变换逻辑。以下是使用 Kotlin 实现的方法:实现步骤计算目标变换矩阵:根据目标宽高比,判断是否需要横向或纵向裁剪。设置 Matrix:使用 Matrix 执行缩放和平移操作。应用到…

    2024年12月3日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信