在工业场景中使用 Apache Flink 处理 Kafka 数据是一种常见的实时流处理方案

在工业场景中使用 Apache Flink 处理 Kafka 数据是一种常见的实时流处理方案,特别是针对 ChangeRecord 数据类型时,能够帮助实现高效的实时 ETL(提取、转换、加载)或事件驱动的应用。以下是关于如何用 Flink 处理 Kafka 数据,并重点解析 ChangeRecord2 的详细步骤和注意事项。

1. ChangeRecord2 的定义

ChangeRecord2 是一种常见的变更数据捕获(CDC, Change Data Capture)格式,通常用于表示数据库表中的增量变更。它通常包含以下信息:

  • 操作类型(Operation Type):INSERT、UPDATE、DELETE。
  • 主键信息:标识变更记录的唯一标识。
  • 变更前后数据(Before/After Data):记录变更之前和之后的字段值。
  • 时间戳(Timestamp):标识变更发生的时间。

例如:

{
  "op": "UPDATE",
  "pk": "123",
  "before": {"field1": "oldValue1", "field2": "oldValue2"},
  "after": {"field1": "newValue1", "field2": "newValue2"},
  "timestamp": "2024-12-05T12:00:00Z"
}

2. Flink 和 Kafka 的集成

2.1 设置 Kafka 消费源

使用 Flink 提供的 Kafka 连接器,从 Kafka 主题中消费 ChangeRecord2 数据。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import java.util.Properties;

public class FlinkKafkaIntegration {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Kafka 配置
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "flink-consumer");

        // 添加 Kafka 源
        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(
            "change-records-topic",  // Kafka 主题
            new SimpleStringSchema(), // 简单的字符串序列化器
            properties
        );

        // 将 Kafka 数据流连接到 Flink
        env.addSource(kafkaConsumer)
           .name("Kafka Source")
           .print(); // 打印输出流数据

        env.execute("Flink Kafka Integration Example");
    }
}

2.2 解析 ChangeRecord2 数据

Flink 消费到 Kafka 数据后,需要将 JSON 格式的 ChangeRecord2 转换为 Flink 数据流中的 POJO 对象。

定义 POJO 类

public class ChangeRecord {
    public String op;           // 操作类型
    public String pk;           // 主键
    public Map<String, String> before; // 变更前数据
    public Map<String, String> after;  // 变更后数据
    public String timestamp;    // 时间戳

    // 必须要有无参构造函数和 Getter/Setter
    public ChangeRecord() {}
}

解析 JSON 数据

使用 FlinkJsonDeserializationSchema 或 GSON/Jackson 解析 JSON。

import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import com.google.gson.Gson;

public class ChangeRecordDeserializationSchema implements DeserializationSchema<ChangeRecord> {
    private Gson gson = new Gson();

    @Override
    public ChangeRecord deserialize(byte[] message) throws IOException {
        return gson.fromJson(new String(message), ChangeRecord.class);
    }

    @Override
    public boolean isEndOfStream(ChangeRecord nextElement) {
        return false;
    }

    @Override
    public TypeInformation<ChangeRecord> getProducedType() {
        return TypeInformation.of(ChangeRecord.class);
    }
}

将解析后的数据流添加到 Flink 作业:

FlinkKafkaConsumer<ChangeRecord> kafkaConsumer = new FlinkKafkaConsumer<>(
    "change-records-topic",
    new ChangeRecordDeserializationSchema(),
    properties
);

DataStream<ChangeRecord> changeRecords = env.addSource(kafkaConsumer);

3. ChangeRecord2 的数据处理

根据变更操作类型(op)对数据执行不同的逻辑处理:

3.1 基于操作类型的分流处理

changeRecords
    .process(new ProcessFunction<ChangeRecord, String>() {
        @Override
        public void processElement(ChangeRecord record, Context ctx, Collector<String> out) throws Exception {
            switch (record.op) {
                case "INSERT":
                    // 处理新增逻辑
                    out.collect("Insert: " + record.after);
                    break;
                case "UPDATE":
                    // 处理更新逻辑
                    out.collect("Update: " + record.before + " -> " + record.after);
                    break;
                case "DELETE":
                    // 处理删除逻辑
                    out.collect("Delete: " + record.before);
                    break;
                default:
                    // 未知操作
                    System.err.println("Unknown operation: " + record.op);
            }
        }
    })
    .print();

3.2 聚合与状态管理

对于实时流式数据处理,可能需要维护状态,例如:

  • 数据统计(总数、增量)。
  • 按主键跟踪最新状态。

使用 Flink 状态 API

changeRecords
    .keyBy(record -> record.pk)
    .process(new KeyedProcessFunction<String, ChangeRecord, String>() {
        private ValueState<Map<String, String>> currentState;

        @Override
        public void open(Configuration parameters) throws Exception {
            ValueStateDescriptor<Map<String, String>> descriptor =
                new ValueStateDescriptor<>("currentState", TypeInformation.of(new TypeHint<Map<String, String>>() {}));
            currentState = getRuntimeContext().getState(descriptor);
        }

        @Override
        public void processElement(ChangeRecord record, Context ctx, Collector<String> out) throws Exception {
            Map<String, String> state = currentState.value();

            if ("INSERT".equals(record.op) || "UPDATE".equals(record.op)) {
                state = record.after;
            } else if ("DELETE".equals(record.op)) {
                state = null;
            }

            currentState.update(state);
            out.collect("Current state for PK " + record.pk + ": " + state);
        }
    });

3.3 数据输出

将处理后的数据输出到目标存储系统(如 Elasticsearch、MySQL 或 Kafka):

changeRecords
    .map(record -> record.after.toString()) // 简化为字符串
    .addSink(new FlinkKafkaProducer<>(
        "processed-topic",
        new SimpleStringSchema(),
        properties
    ));

4. 注意事项

  1. Kafka 数据格式一致性
    • 确保 ChangeRecord2 数据格式一致,否则需要添加异常处理。
  2. 高吞吐量优化
    • 调整 Kafka 和 Flink 的并行度。
    • 使用 Flink 的 Checkpoint 机制确保容错。
  3. Schema 动态更新
    • 如果数据库模式变化,Flink 需动态加载最新模式。

通过上述方式,Flink 可以高效地消费和处理 Kafka 中的 ChangeRecord2 数据,满足工业实时数据处理的需求。

发布者:myrgd,转载请注明出处:https://www.object-c.cn/5105

Like (0)
Previous 2024年12月5日 下午7:57
Next 2024年12月7日 下午6:50

相关推荐

  • 在 Apache Spark 中,任务的切分(Task Division)机制

    在 Apache Spark 中,任务的切分(Task Division)是 Spark 将应用程序逻辑划分为多个并行任务的核心机制。任务切分的主要原则是基于数据分区和操作算子。以下是任务切分的核心原则和关键影响因素: 1. Spark 任务切分的基本概念 2. 任务切分的原则 2.1 基于分区(Partition)的切分 2.2 基于依赖关系(Depend…

    2024年11月25日
    5800
  • 在 Debian 8 上设置 Apache 虚拟主机步骤操作

    在 Debian 8 上设置 Apache 虚拟主机需要按照以下步骤操作。这可以让您为不同的域名或子域名配置独立的网站目录和设置。 步骤 1:安装 Apache确保 Apache 已安装。如果没有安装,可以运行以下命令: 步骤 2:创建虚拟主机的目录结构为每个虚拟主机创建单独的目录,例如: 为测试,在每个目录下创建一个 index.html 文件: 设置目录…

    2024年12月2日
    3000
  • 开源免费的AI智能文字识别产品(OCR识别)

    以下是一些免费和开源的 AI 智能文字识别(OCR)和文档处理工具,可以满足通用文档解析、OCR 识别、格式转换、篡改检测以及证件识别等需求: 1. OCR 识别工具 Tesseract OCR PaddleOCR 2. 文档格式转换工具 Apache PDFBox LibreOffice 3. 篡改检测工具 DocGuard 4. 证件识别工具 EasyO…

    2024年11月26日
    7400
  • ChatGPT 和文心一言(由百度开发)是两款智能对话产品那个更好用

    ChatGPT 和文心一言(由百度开发)是两款智能对话产品,各自有独特的优点,适用场景和体验因用户需求而异。以下是它们的一些对比,帮助你选择适合自己的工具: 1. 语言能力 2. 知识库 3. 应用场景 4. 技术生态 5. 用户体验 适用选择建议 总结:如果你主要以中文为主、需求偏向本地化应用,文心一言可能更贴合你的需求;如果你的需求是国际化、多语言或专业…

    2024年12月8日
    2800
  • 在 MySQL 中 utf8mb4 和 utf8mb3 两种 UTF-8 编码的字符集主要区别

    在 MySQL 中,utf8mb4 和 utf8mb3 是两种 UTF-8 编码的字符集,它们的主要区别如下:1. 支持的字符范围不同utf8mb3:原来的 UTF-8 编码实现,支持最多 3 个字节的字符。无法存储超出基本多语言平面 (BMP) 的 Unicode 字符(U+10000 至 U+10FFFF),例如某些表情符号和特殊的语言字符。主要用于存储…

    2024年12月3日
    14600
  • 在 Kubernetes 中,解决kubelet下载docker私有仓库验证问题

    在 Kubernetes 中,kubelet 默认需要访问容器镜像时,能够成功从 Docker 私有仓库拉取镜像。遇到验证问题时,通常需要解决 镜像仓库认证 和 TLS 证书配置 问题。以下是具体步骤: 1. 配置私有镜像仓库认证如果私有镜像仓库需要身份验证,需要配置 imagePullSecrets 或在每个节点设置全局 Docker 登录。方法 1:使用…

    2024年12月2日
    4200
  • Redis中如何使用lua脚本redis与lua的相互调用方法

    在 Redis 中,Lua 脚本 提供了一种强大的方式来执行原子操作,可以在 Redis 服务器上直接执行 Lua 代码,从而避免了多次网络往返和保证操作的原子性。Redis 内置了对 Lua 脚本的支持,通过 EVAL 命令来执行脚本,EVALSHA 则用于执行已经加载到 Redis 服务器的脚本。1. Redis 与 Lua 脚本的基本交互1.1 基本的…

    2024年11月28日
    2500
  • 高性能 TongRDS 是一种分布式内存数据缓存中间件

    TongRDS 是一种分布式内存数据缓存中间件,旨在为高性能、高并发的应用场景提供快速的数据访问解决方案。类似于 Redis 或 Memcached,TongRDS 的核心功能围绕内存数据存储和分布式特性展开,同时可能具备特定的优化或扩展能力。 以下是 TongRDS 的可能特性和应用场景总结: 1. 核心特性 分布式缓存架构 高性能存储 灵活的数据模型 扩…

    2024年12月3日
    7300
  • 在国内访问 GitHub 可能会遇到加载缓慢或无法打开的问题

    在国内访问 GitHub 可能会遇到加载缓慢或无法打开的问题,这通常与网络连接、DNS 设置或网络限制有关。以下是几种解决方法: 1. 更改 DNSDNS 配置错误可能导致 GitHub 无法正常访问。可以尝试修改 DNS 为公共 DNS 服务:推荐使用:阿里云 DNS:223.5.5.5 和 223.6.6.6Google DNS:8.8.8.8 和 8.…

    2024年11月27日
    3000
  • ubuntu服务器安装cuda11.0、cuDNN入门教程

    在 Ubuntu 服务器上安装 CUDA 11.0 和 cuDNN 的详细教程如下。本教程涵盖了从环境准备到安装和验证的完整流程,适用于初学者。 一、环境准备 1. 系统要求 2. 卸载旧版本(如有) 清理可能存在的旧版本 CUDA 和 NVIDIA 驱动: 二、安装 NVIDIA 驱动 1. 检查 GPU 支持情况 使用 lspci 或 nvidia-sm…

    2024年11月22日
    2200
  • 在安装Docker时,执行yum install -y yum-utils 报错的解决方法

    在安装 Docker 时,如果执行 yum install -y yum-utils 报错,可能是由于以下原因之一: 解决方法1. 检查 Yum 源配置确保您的系统配置了可用的 Yum 源。使用以下命令检查: 如果列表为空或不可用,重新配置一个有效的源(例如阿里云、腾讯云)。 替换为阿里云源(以 CentOS 7 为例): 2. 安装 EPEL 仓库yum-…

    2024年11月27日
    2500
  • 在 Nuxt.js 应用中,webpack 的 compile 事件钩子构建过程

    在 Nuxt.js 应用中,webpack 的 compile 事件钩子通常用于在构建过程中处理或监听 Webpack 编译的状态。webpack 是 Nuxt.js 中的核心构建工具之一,而 Nuxt.js 本身是基于 Webpack 配置的,允许你通过扩展 Webpack 配置来进行自定义。要使用 webpack 的 compile 事件钩子,首先你需要…

    2024年11月29日
    2600
  • 使用 OpenVPN 将多个局域网互联的一种配置方案

    使用 OpenVPN 将多个局域网互联是一个常见需求,尤其是在远程办公或多地分支机构互联场景下。以下是一种基于 OpenVPN 的配置方案,旨在实现多个局域网的互联。 场景说明 网络拓扑图 配置步骤 1. 安装 OpenVPN 在所有相关设备上安装 OpenVPN。以下以 Linux 为例: 2. 配置 OpenVPN 服务器 创建服务器配置文件 编辑 /e…

    2024年12月7日
    3200
  • 在区块链安全名词及常见攻击手法去中心化

    在区块链技术中,安全是一个至关重要的领域。由于区块链本身具备去中心化、不可篡改的特点,它在保证数据透明性和完整性的同时,也容易受到多种类型的攻击。为了更好地理解区块链的安全问题,我们需要了解一些相关的安全名词及常见的攻击手法。 1. 区块链相关安全名词 1.1 哈希函数(Hash Function) 哈希函数是区块链中数据验证和一致性保证的核心。哈希函数将输…

    2024年11月25日
    5300
  • Apache Flink 分布式流处理框架中API的使用部分

    Apache Flink 是一个分布式流处理框架,支持批处理和流处理。在 Flink 中,API 是核心部分,允许用户定义数据流处理逻辑、配置作业并执行操作。Flink 提供了多种 API 来满足不同的需求,包括 DataStream API、DataSet API(批处理 API)、Table API 和 SQL API。1. Flink DataStre…

    2024年11月29日
    2000

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

在线咨询: QQ交谈

邮件:723923060@qq.com

关注微信